
Reverse Engineering: An
Overview



What is Reverse Engineering?

The process of analyzing software to identify its components and their relationships

Understanding the software’s design and implementation

Commonly used in cybersecurity to analyze malware and identify vulnerabilities



Why Reverse Engineering is Important

Analyzing malware to understand its behavior and develop countermeasures

Identifying vulnerabilities in software to improve security

Recovering lost source code for legacy systems



Tools for Reverse Engineering

Ghidra: A software reverse engineering suite developed by the NSA

IDA Pro: Interactive Disassembler, a popular tool for static analysis

Radare2: An open-source framework for reverse engineering and analyzing binaries

Binary Ninja: A reverse engineering platform with a focus on ease of use



Introduction to Assembly Language



High-Level vs. Low-Level Languages

High-Level Languages: Python, Java, C++

Easier for humans to read and write

Compiled/interpreted into machine code

Low-Level Languages: Assembly (x86, ARM)

Closer to machine code

Directly interacts with hardware



Program Build Flow

Source Code: Written in C/C++

Compilation: Converts to Object Code (.o files)

Linking: Combines Object Code into Executable

Disassembly: Converts Executable back to Assembly for analysis



x86 Registers Overview



General Purpose Registers

EAX: Accumulator for operands/results

EBX: Base pointer to data

ECX: Counter for loops/strings

EDX: I/O pointer

ESI/EDI: Source/Destination for strings

ESP: Stack Pointer

EBP: Stack Base Pointer

EIP: Instruction Pointer (next instruction to execute)



Flags and Segment Registers

Flags:

OF: Overflow Flag

SF: Sign Flag

ZF: Zero Flag

Segment Registers:

CS: Code Segment

DS: Data Segment

SS: Stack Segment

ES/FS/GS: Extra Segments



Basic Instructions



Data Transfer Instructions

mov: Transfer data

mov destination, source

lea: Load effective address

lea destination, [source]



Control Transfer Instructions

jmp: Jump to address

jmp address

call: Call procedure

call address

ret: Return from procedure

ret



Arithmetic Instructions

add: Addition

add destination, value

sub: Subtraction

sub destination, value

mul: Multiplication

mul source

div: Division

div source



Addressing Modes
Immediate Addressing

Operand is a constant value

Example: mov eax, 5

Register Addressing
Operand is a register

Example: mov eax, ebx

Memory Addressing
Operand is an address in memory

Example: mov eax, [ebx]



The Stack
Overview

LIFO Data Structure: Last In, First Out

Push/Pop:

push value : Save data on the stack

pop destination : Retrieve data from the stack



Common Stack Instructions

pusha: Push all general-purpose registers

pushad: Push all 32-bit registers

popa: Pop all general-purpose registers

popad: Pop all 32-bit registers


