Reverse Engineering: An
Overview

What is Reverse Engineering?

= The process of analyzing software to identify its components and their relationships
= Understanding the software’s design and implementation

= Commonly used in cybersecurity to analyze malware and identify vulnerabilities

Why Reverse Engineering is Important

= Analyzing malware to understand its behavior and develop countermeasures
= Identifying vulnerabilities in software to improve security

= Recovering lost source code for legacy systems

Tools for Reverse Engineering

= Ghidra: A software reverse engineering suite developed by the NSA
= IDA Pro: Interactive Disassembler, a popular tool for static analysis
= Radare2: An open-source framework for reverse engineering and analyzing binaries

= Binary Ninja: A reverse engineering platform with a focus on ease of use

Introduction to Assembly Language

High-Level vs. Low-Level Languages

= High-Level Languages: Python, Java, C++
= Easier for humans to read and write
= Compiled/interpreted into machine code

= Low-Level Languages: Assembly (x86, ARM)
= (Closer to machine code

= Directly interacts with hardware

Program Build Flow

= Source Code: Written in C/C++
= Compilation: Converts to Object Code (.o files)
= Linking: Combines Object Code into Executable

= Disassembly: Converts Executable back to Assembly for analysis

x86 Registers Overview

General Purpose Registers

= EAX: Accumulator for operands/results
= EBX: Base pointer to data

= ECX: Counter for loops/strings

= EDX: /O pointer

= ESI/EDI: Source/Destination for strings
= ESP: Stack Pointer

= EBP: Stack Base Pointer

= EIP: Instruction Pointer (next instruction to execute)

Flags and Segment Registers

= Flags:
= OF: Overflow Flag
= SF: Sign Flag
m ZF: Zero Flag
= Segment Registers:
= (CS:Code Segment
= DS: Data Segment
= SS: Stack Segment
= ES/FS/GS: Extra Segments

Basic Instructions

Data Transfer Instructions

= mov: Transfer data
B mov destination, source

» lea: Load effective address

" lea destination, [source]

Control Transfer Instructions

= jmp: Jump to address
" jmp address
= call: Call procedure
m call address
= ret: Return from procedure

B ret

Arithmetic Instructions

= add: Addition

B 3dd destination, value
= sub: Subtraction

B suyb destination, value
= mul: Multiplication

= mul source
= div: Division

m div source

Immediate Addressing

= QOperand is a constant value

= Example: mov eax, 5

Register Addressing

= QOperand is a register

= Example: mov eax, ebx

Memory Addressing

= QOperand is an address in memory

= Example: mov eax, [ebx]

Overview

= LIFO Data Structure: Last In, First Out
= Push/Pop:
= push value : Save data on the stack

= pop destination :Retrieve data from the stack

Common Stack Instructions

= pusha: Push all general-purpose registers
= pushad: Push all 32-bit registers
= popa: Pop all general-purpose registers

= popad: Pop all 32-bit registers

